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Abstract—Breast density is widely adopted to reflect the likelihood of early breast cancer development. Existing methods of

mammographic density classification either require steps of manual operations or achieve only moderate classification accuracy due to

the limited model capacity. In this study, we present a radiomics approach based on dilated and attention-guided residual learning for

the task of mammographic density classification. The proposed method was instantiated with two datasets, one clinical dataset and

one publicly available dataset, and classification accuracies of 88.7 and 70.0 percent were obtained, respectively. Although the

classification accuracy of the public dataset was lower than the clinical dataset, which was very likely related to the dataset size, our

proposed model still achieved a better performance than the naive residual networks and several recently published deep learning-

based approaches. Furthermore, we designed a multi-stream network architecture specifically targeting at analyzing the multi-view

mammograms. Utilizing the clinical dataset, we validated that multi-view inputs were beneficial to the breast density classification task

with an increase of at least 2.0 percent in accuracy and the different views lead to different model classification capacities. Our method

has a great potential to be further developed and applied in computer-aided diagnosis systems. Our code is available at https://github.

com/lich0031/Mammographic_Density_Classification.

Index Terms—Radiomics, mammographic density, residual learning, dilated convolution, attention, classification
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1 INTRODUCTION

BREAST cancer is a big heath threat [1], [2], presenting an
increasing incidence and a decreasing death rate in all age

groups in the past decades [2], [3]. Improved breast cancer
treatments and widespread adoption of breast cancer screen-
ing techniques, especially mammography, contribute signifi-
cantly to this favorable trend of mortality reduction [3].
Mammography is the most common and efficient method for

breast cancer screening. Clinical studies reported that in addi-
tion to mammographic abnormalities (e.g., masses, calcifica-
tion, architectural distortion, asymmetries), the change of
breast density is also an important indicator of early breast
cancer development [4], [5], [6].

The very first research on the importance of breast density
began with Wolfe et al., who demonstrated the relationship
between mammographic parenchymal patterns and the risk
of developing breast cancer [7]. Following this, Boyd et al.
showed a similar correlation betweenmammographic density
and breast cancer risks [8]. Inspired by these discoveries, a
number of studies on breast density classification emerged.
The American College of Radiology (ACR) Breast Imaging
Reporting and Data System (BI-RADS) groups breasts into
four categories according to the density with BI-RADS I refers
to the lowest densities and BI-RADS IV refers to the highest
(BI-RADS I: fat breast (0-25 percent), BI-RADS II: fat with
some fibroglandular tissue (26-50 percent), BI-RADS III: het-
erogeneously dense breast (51-75 percent), and BI-RADS IV:
extremely dense breast (76-100 percent)). Patients with
extremely dense breasts (BI-RADS IV) have a 2-6 times higher
risk of developing breast cancer than patients with fatty
breasts (BI-RADS I) [9]. Therefore, breast density plays an
important role in the early detection of breast cancer. How-
ever, inspection of the generated large quantities of mammo-
grams by radiologists is tedious and subjective, which suffers
from poor intra- and inter-radiologists reproducibility [10],
[11]. An automatic systemwhich can accurately classifymam-
mographic densities is in urgent need.
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Many studies measured breast density by quantifying the
gray-level histograms of mammograms [12], [13], [14]. Subse-
quent studies found that it might be insufficient to classify
breasts into the corresponding BI-RADS categories based
only on the histogram information. For example, the study by
Oliver et al. illustrated that the four different categories are
quite similar with regard to both the mean gray-level values
and the shapes of the histogram [4]. To address this issue,
researchers turned to applying traditional feature engineering
methods to handle the breast density classification task. A
general procedure of feature engineering approaches involves
regions of interest (ROIs) segmentation, feature extraction,
and classification. Bovis et al. got an accuracy of 71.4 percent
by using a classifier paradigm where a combination of the
Fourier and discrete wavelet transforms was investigated on
the first and second-order statistical features [15]. Oliver et al.
extracted morphological and texture features from breast tis-
sue regions which were segmented using a fuzzy C-means
clustering technique, and these features were then treated as
inputs for the breast density classifier [4]. Jensen et al. adopted
the same breast tissue segmentationmethod but extracted the
first and second-order statistical features as well as morpho-
logical features for the Mammographic Image Analysis Soci-
ety (MIAS) dataset [16]. These two studies achieved 86.0 and
91.4 percent breast density classification accuracies, respec-
tively. Chen et al. evaluated different local features using tex-
ture representation algorithms. After that, they modelled
mammographic tissue patterns based on the local tissue
appearances in mammograms [17]. The work of Indrajeet
et al. was based on ROIs manually extracted from images.
Then, multi-resolution texture descriptors were extracted
from 16 sub-band images which were obtained from second
level decomposition through wavelet packet transform [18].
Although satisfactory classfication performance could be
achieved for the target dataset with these traditional feature
engineering methods, prior expert knowledge of the data and
a hand-crafting process are necessary, which hinders the gen-
eral wide adoption of the developed algorithms.

On the other hand, the fast development of the deep
learning field offers a promising alternative method for
medical image analysis [19], [20], [21], [22], [23]. Convolu-
tional Neural Networks (CNNs) are one type of these deep
networks that have already shown excellent performance in
image classification, detection, and segmentation. CNNs
can learn highly nonlinear relationships between the inputs
and outputs without human intervention. Radiomics is an
emerging method in recent years that works by extracting
large amounts of advanced quantitative features from medi-
cal images and quantifying the predictive or prognosis rela-
tionships between images and medical outcomes according
to the features [24], [25]. Nevertheless, the advantages of
CNNs have not been fully integrated with the radiomics
approach to solve the problems encountered during classi-
fying mammographic density into the four BI-RADS catego-
ries. Therefore, in this paper, we propose a CNN-based
radiomics method for the automatic extraction of high-
throughput features from mammographs and the subse-
quent classification of the breast densities. Specifically, our
contributions can be summarized as follows: (1) We col-
lected a clinical mammographic dataset from 500 patients
for the evaluation of breast density classification models. (2)

We proposed an enhanced mammographic density classifi-
cation model with dilated and attention-guided residual
learning. (3) Targeting at analyzing the multi-view mammo-
grams, we specifically designed an effective multi-stream
network architecture. (4) Evaluating the multi-view input
network architecture on the clinical dataset, we identified
that the two imaging views (craniocaudal (CC) view and
mediolateral oblique (MLO) view) lead to different classifi-
cation capabilities of the model. (5) We empirically proved
that sharing parameters among the different streams for fea-
ture extraction are more beneficial to the classification accu-
racy. (6) Our code is made publicly available such that our
method can serve as a baseline for the following research on
mammographic breast density classification.

The rest of this paper is organized as follows. Section 2
listes the related works. Section 3 describes the dataset and
the network architecture, as well as the implementation
details. In Section 4, the results are presented. Sections 5
and 6 are the discussion and conclusion.

2 RELATED WORKS

A number of studies have applied CNNs to mammogram-
related tasks, including breast lesion detection, benign and
malignant breast mass differentiation, microcalcification
recognition, and their combinations [26], [27], [28], [29], [30],
[31]. For the specific topic of mammographic density classi-
fication, CNNs have also made great contributions. Fonseca
et al. utilized CNNs to extract features from mammograms
and conducted density classification using a support vector
machine classifier [32]. Ahn et al. designed a CNN architec-
ture to classify the input mammogram patches into dense
or fatty tissues with the help of three additional created
images, and estimate the mammographic density by com-
bining the results of all patches [33]. Li et al. developed a
similar method to classify mammographic density based on
a sliding window segmentation approach [34]. These two
studies require the manual segmentation maps of dense
regions as references. Wu et al. treated concatenated pixel
intensity histograms of four views (left CC, right CC, left
MLO, and right MLO) as the image features and use a
three-layer CNN (one input layer, one fully connected layer,
and one softmax classification layer) to predict the density
categories [35]. Mohamed et al. designed an eight-layer
CNN (improved from AlexNet) to directly classify the
mammograms into two categories (scattered density and
heterogeneously dense) [36]. Lehman et al. adopted
ResNet18 to do mammographic density classification and
for the first time, they implemented the deep learning-based
model in the clinical application and tested the acceptance
of its assessment by the radiologists [37]. Furthermore,
Kyono et al. developed a multi-task system that could pre-
dict factors related to breast cancer, including density, con-
spicuity, etc. and at the same time pick out those cases that
the system could not confidently diagnose for further inves-
tigation [38]. Gandomkar et al. applied inception-V3 net-
work architecture to process mammograms generated by
mammography units manufactured by different manufac-
turers [39]. All these deep CNN-based studies selected a sin-
gle CNN architecture to perform the classification task
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without considering the different capacities of different net-
work structures, which we will investigate in this study.

It is widely recognized that to increase the performance
of CNN models, a large receptive field is necessary. To
achieve a large receptive field, serial pooling operations or
strided convolutions are needed, when severe image resolu-
tion decrease happens. This issue is especially troublesome
for medical image diagnosis as lesions often occupy small
regions of the images. Different methods have been devel-
oped to solve this problem, including skip connections to
introduce more information from low level feature maps to
the final outputs and dilated convolutions. Dilated convolu-
tion can preserve the image resolution while increasing the
receptive field. Multi-scale contextual information were
extracted through utilizing dilated convolutions with differ-
ent dilation rates to improve the segmentation performance
[40], [41]. Dilated convolution was also effective for the
image classification task [42]. Another frequently investi-
gated problem with classic CNN models recently is the
information redundancy in extracted large number of fea-
ture maps. Different attention mechanisms have been pro-
posed to highlight useful information and suppress the
redundant one. Attention has been widely used in the natu-
ral language processing field. Interestingly, studies found
that classic CNNs could implicitly learn to focus on the
most important regions of input images [43], which is a
kind of spatial attention. Both spatial and channel-wise
attention modules have been designed to improve the clas-
sification performance of CNNs [44], [45]. Even though
many studies have applied deep CNNs to the mammo-
graphic density classification task as discussed, the fast
updating deep learning methods have not been fully inves-
tigated in these aspects. Therefore, we feel motivated to
study the feasibility of applying deep residual learning with
dilated convolutions and attention mechanisms to mammo-
graphic density classification. In addition, it is also interest-
ing to investigate the complementary relationships between
the different imaging views of the same patients.

3 MATERIALS AND METHODS

3.1 Dataset

Two datasets were evaluated in this study. First, we con-
ducted a retrospective study on 1985 mammograms col-
lected from 500 female patients. The examinations were
performed from October 2015 to August 2018. The patients
were aged from 17 to 75. There are 2 to 4 mammograms
taken at different views (CC andMLOviews) for each patient.

Among the 1985 mammograms, 319 were classified as BI-
RADS I (86 patients), 423 were BI-RADS II (106 patients), 541
were BI-RADS III (133 patients), and 702 were BI-RADS IV
(175 patients) (Fig. 1a). Example images of the four categories
are shown in Fig. 2a. This study was approved by the local
ethics committee. Informed consent was obtained by all of the
involved patients. All examinations and the density classifica-
tion were performed by radiologists that have decades of
experience. One overall BI-RADS category is given to the
patient without distinguishing the left or right breast. The
mammogramswere collected and saved by the standard Dig-
ital Imaging and Communications in Medical (DICOM) for-
mat. The image matrix has different sizes from 407� 1374 to
2394� 3062.

Then, we tested our proposed approach on a publicly
available dataset, the INbreast dataset [46]. The INbreast
dataset was collected from 115 patients (410 images), from
which 90 are with both breasts affected (4 images per case)
and 25 are mastectomy patients (2 images per case). Two
views for each breast were recorded (CC and MLO views).
Among the 410 images, 136 were classified as BI-RADS I,
147 as BI-RADS II, 99 as BI-RADS III and 28 as BI-RADS IV
(Fig. 1b). The mammograms were acquired on x-ray films
and saved by DICOM format. The image matrix has either
3328� 4084 or 2560� 3328 pixels.

3.2 Data Preprocessing

As introduced in the dataset section, for our clinical dataset,
we have a total number of 1985 images. It could be observed
from Fig. 2a that the original mammograms contain large
regions of irrelevant background. Tomake full use of the com-
putation power, we cropped out the background regions first
(Fig. 2b). Then, the imageswere resized to 224� 224. It is to be
noted that our focus is the density classification and the aspect
ratios of the mammograms were not very important in this
case. Training deep CNN models requires a large number of
data and data augmentation is frequently applied. We aug-
mented our training dataset by random horizontal and verti-
cal flippings and random rotations in ½�90o; 90o�. A 5-fold

Fig. 1. Image distributions over the four categories. (a) The clinical data-
set. (b) The INbreast dataset.

Fig. 2. Example mammograms of the four BI-RADS categories.
(a) Mammograms before cropping. (b) Corresponding mammograms
after cropping.
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cross-validation experiment was conducted with the dataset.
To avoid possible bias, it was guaranteed that all mammo-
grams of the same patient went into either the training dataset
or the validation dataset. For the experiments regarding the
multi-view inputs, we directly copied the relevant views to
manually generate the four inputs if the corresponding views
are missing, which leads to a total number of 2,000 images for
these experiments.

The same processing steps were applied to the INbreast
dataset.

3.3 Deep Residual CNNs

CNNs are a class of deep learning methods that attempt to
learn high-level features and tackle the computer vision
problems, such as classification, detection, and segmenta-
tion. Gradient vanishing is a big problem for deep CNNs.
Thanks to the invention of the residual network, CNNs can
go substantially deeper now than previous. A detailed
description of the residual neural networks could be found
in the literature [47]. Briefly, we let the stacked nonlinear
layers fit another mapping of the residual F ðXÞ instead of
the desired output feature mapHðXÞ

F ðXÞ ¼ HðXÞ �X; (1)

and H(X) is recast to

F ðXÞ þX: (2)

The formulation of F ðXÞ þX can be realized by feedfor-
ward CNN with shortcut connections or skip connections.
Due to the propagation of gradients through the shortcut
connections, it is easier to optimize the residual mapping of
F ðXÞ than to optimize the original mapping ofHðXÞ. There-
fore, by adding residual learning block, deeper networks

could be designed to extract richer information from images
for our classification tasks.

Next, we will describe in detail the CNN method used for
image classification. After preprocessing, the training and val-
idation images went through the training and the test stages
respectively as shown in Fig. 3. CNNs are trained by feedfor-
ward and backpropagation processes. The feedforward pro-
cess extracts and selects the features and calculates the loss,
whereas the backpropagation process optimizes the network
parameters by gradient descent of the loss function.

The feedforward process of CNNs could be interpreted
by the following steps. First, the images pass through the
convolution layers

Cl ¼ slðWl � Cl�1 þ blÞ; (3)

where l denotes the layer number, sl denotes the nonlinear
activation (the rectified linear activiation (ReLU) was used for
this study),Wl and bl are weights and bias, � denotes the con-
volution operation, and Cl denotes the feature maps with C0

denotes the input. Some convolution layers are followed by
downsampling procedure (convolutionwith strides).

After passing through all the convolution layers, the fea-
ture maps were compressed by global average pooling and
went through several fully connected (FC) layers. For our
classification task, a softmax activation was included after
the FC layers

CL ¼ softmaxðWLCL þ bLÞ; (4)

where softmaxðxÞi ¼ exiP
exi

and CL is the output of last FC

layer, So the final prediction from the network could be

summarized as

Y ¼ Cðu; XÞ; (5)

Fig. 3. Schematic diagram of residual learning for classification.
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where u represents all the network parameters to be opti-
mized, C denotes the overall forward pass network and X
refers to the input.

On the other hand, the CNN backward process is the
backward propagation of loss gradients, which tries to opti-
mize the network parameters by addressing the following
cross-entropy loss minimization problem

û ¼ argmin
u

�
XK
k¼1

XI
i¼1

Y
0
i logðCðu; XÞÞ

" #( )
; (6)

where I and K are the total number of classification catego-
ries and training samples respectively. Y

0
i is the manually

labelled ground truth.
After the training phase, a classificationmodel is obtained

with the trained parameters. For new independent samples,
we can generate the probability distributions of each case by
calculating

Ytest ¼ Cðû; XtestÞ: (7)

Then the BI-RADS categories of the mammograph
images could be determined accordingly.

3.4 Network Architecture With Dilated Convolution
and Attention

Our overall network architecture is shown in Fig. 4, which is
composed of the input, feature extration, and classification
modules. By utilizing dilated convolutions, the resolution of
the feature maps before global average pooling is changed to
1/8 of the input resolution (Fig. 4a) instead of 1/32 (Fig. 4b)
[47]. A channel-wise attention block was applied to highlight
the important featuremaps in different layers (Fig. 4c).

Dilated convolution or atrous convolution increases the
receptive field of the network without losing the image reso-
lution, which is very important for the medical image diag-
nosis task. For a dilated convolution with a dilation rate of
d, the operation can be represented as

ðCl � kÞðpÞ ¼
X

sþd�t¼p

ClðsÞkðtÞ; (8)

where Cl refers to the feature map at layer l, and k refers to
the filter with a dilation rate of d. The receptive field of the
element in the output feature map (Clþ1Þwith regards to the
input feature map (Cl) is ksþ ðksþ 1Þðd� 1Þ with ks repre-
senting the kernel size. Normal convolution is a special case
of dilated convolution with a dilation rate of 1, and increas-
ing the dilation rate enlarges the receptive field linearly.

Each layer in the deep neural networks extracted a large
number of features and some of them may be irrelevant to
the task. With these irrelevant features sharing the same
importance, the important features may be overlooked. The
channel-wise attention block in each layer adaptively learns
a weight for each feature map in that layer to selectively
utilize the extracted feature information. The output of the
attention block is

Yc ¼ Xc þ S �Xc; (9)

whereXc is the input to the attention block and Yc is the out-
put of the block. S is the weight of each feature map calcu-
lated by

S ¼ sðW2 � dðW1 � Z þ b1Þ þ b2Þ (10)

Z ¼ 1

H �W

XH
i¼1

XW
j¼1

ðXcÞ; (11)

where s refers to the Sigmoid function. W1 2 Rn=r�n,
W2 2 Rn�n=r, b1 2 Rn=r, and b2 2 Rn are the weights and bias
of the FC layers, respectively. r ¼ 16 is a reduction ratio.

3.5 Experiments With Multi-View Inputs

To investigate the complementary relationships between the
different imaging views, we conducted experiments with
multi-view inputs (Fig. 5). In brief, we have performed
experiments treating all four views (Fig. 5a) as well as two
CC views (Fig. 5b) or two MLO views of the same patients
as the inputs. Multiple network streams are utilized to
extract features from the different view inputs and the
extracted features are concatenated before classification.
The different network streams in our experiments can have

Fig. 4. Network architecture. (a) Architecture of the proposed ResNet50 + DC + CA (DC: dilated convolutions. CA: channel-wise attention).
(b) Architecture of ResNet50. (c) The attention block. (S1, D1) means that the first convolution in the block has a stride of 1 and all convolutions in
the block has a dilation rate of 1. FC refers to fully connected layers.
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shared parameters or independent parameters, which we
will discuss in the results section.

3.6 Parameter Settings and Implementation Details

We used Pytorch to implement our CNN networks for the
breast density classification task. Two sets of models were
independently trained from scratch for the two datasets.
The network training was implemented on a Dell-7910
workstation equipped with two E5-2640v4 Intel Haswells, a
NVIDIA TITAN XP GPU and 64G memory. Adam was
used for training, with a batch size of 16. The learning rate
was initially set to 0.001 and reduced by 1

2 every 30 epoches.
Random values drew from the uniform distribution were
used for the weight initialization and zero for the bias ini-
tialization. The models with the smallest loss values within
100 training epochs (200 training epochs for the multi-view
inputs as slower convergence was observed) were selected
as the final models to generate the classification results. We
use accuracy, F1 score, and area under the curve (AUC) of
receiver operating characteristics curves (ROC) to character-
ize the classification results. F1 score and AUC are calcu-
lated when treating each BI-RADS category classification as
a binary classification task, and the final macro-averaged
results for all of the four categories are reported.

4 RESULTS

4.1 Results on the Clinical Dataset

4.1.1 Classification Performance With Different Base

Residual Networks

First of all, we evaluated the influence of network depth on
the classification performance. Table 1 summarizes the clas-
sification results of the three different network configura-
tions. It could be found that overall, all the networks showed
very similar results with a mild increase in the evaluation
metrics of ResNet50. This is acceptable as deeper networks
require larger datasets to obtain a proper training despite
their larger capacities. For our clinical dataset, ResNet50

might be the one that achieves the best balance between
model capacity and dataset requirement. Detailed inspection
reveals that for all the three networks, the best classification
performance was achieved for BI-RADS IV followed by BI-
RADS I, and the worst for BI-RADS II (Table S1 in supple-
mentary file, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TCBB.2020.2970713). This performance difference
among the four categories could be explained from two per-
spectives. On one hand, BI-RADS I and IV are the two most
distinguishable categories, so they should be easier to clas-
sify. On the other hand, more training images were available
for BI-RADS III and IV. Combining these two factors, BI-
RADS IV mammograms are the easiest to be accurately clas-
sified, whereas BI-RADS II mammograms are the hardest.

To have an in-depth investigation of the classification
behavior of the networks, we present the confusion matrix
generated from one experiment of ResNet50 (Table 2). It
could be observed that except for BI-RADS III, for which
several images were misclassified as BI-RADS I (3 images),
all the mistakes were made between neighboring categories.
For the worst performer BI-RADS II, there were 9 images
classified as BI-RADS I, 9 as BI-RADS III, and 0 as BI-RADS
IV by the network. As mammographic density classification
is rather qualitative and subjective, these mistakes could be
tolerated for clinical applications.

4.1.2 Performance Enhancement by Dilated

Convolutions and Attention

We tested the effectiveness of the added modules using the
best baseline residual networks, ResNet50 (Table 3). Large
improvements on accuracy and F1 score were observed
whereas AUC results were not influenced. By using dilated
convolutions alone, both accuracy and F1 score were
increased by 1.1 percent. By adding the channel-wise atten-
tion module alone, increases of 1.0 percent on accuracy and
of 1.1 percent on F1 score were observed. By simultaneously
integrating dilated convolutions and channel-wise attention
blocks, accuracy and F1 score were increased by 1.6 and
1.5 percent, respectively, compared to the naive ResNet50.

Fig. 5. Network architecture with multi-view inputs. (a) Four-view inputs.
(b) Two-view inputs (similar for two MLO-view input setting).

TABLE 1
Classification Results of Different Baseline ResNet

Models on the Clinical Dataset

Models Accuracy (%) F1 score (%) AUC (%)

ResNet34 86.2 84.7 97.1
ResNet50 87.1 85.6 97.2
ResNet101 86.2 84.7 97.1

TABLE 2
Confusion Matrix Generated From One Experiment of
ResNet50 on the Clinical Dataset (Accuracy in %)

BI-RADS I II III IV

I 96.9 3.1 0 0
II 10.1 79.8 10.1 0
III 2.7 7.3 84.5 5.5
IV 0 0 2.1 97.9
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The performance improvement was not a simple summation
of the improvement by single modules. For the current
network settings, we simply added the attention module
after each layer without architecture optimization. As neural
architecture search (NAS) is frequently studied recently [48],
we plan to optimize our network architecture through NAS
in the future.

4.1.3 Comparison to Existing Models

Our proposed ResNet50 with dilated convolutions and
attention modules achieved the best classification results
when compared to three existing models [36], [37], [39]
(Table 4). The detailed results regarding each of the four cat-
egories also confirmed that our model could outperform
these comparison models (Table S2 in supplementary file,
available online).

4.1.4 Effectiveness of Multi-View Inputs

Compare the results utilizing four inputs (Table 5) to those
utilizing single-view inputs (Table 3), it can be clearly
observed that the four-input setting is beneficial to the clas-
sification task and improved statistics were achieved by all
the investigated models including the baseline ResNet50.
Meanwhile, our proposed network with dilated convolu-
tions and attention modules obtains the highest scores
among the four models reflected by all the three evaluation
metrics.

For the experiments with two inputs, results indicate that
with our clinical dataset under our experimental conditions,
networks trained with the two CC-view inputs can perform
similar to the networks trained with four inputs, whereas
networks trained with the two MLO-view inputs perform
much worse even than the single-input models. Therefore,
we suggest that CC view is more important for our density
classification task. Nonetheless, the proposed network con-
tinues to be the best among the four models.

All the above experiments were conducted by sharing
the parameters among the different feature extraction
streams. When the different streams have independent
parameters to optimize, the classification performance was

much worse (Table 6). It might suggest that for our breast
density classification task, although different view mammo-
grams contain useful complementary information, the fea-
ture extractor should be shared to regularized the feature
extraction process.

4.2 Results on the INbreast Dataset

The classification results of the different ResNet-based net-
works on the INbreast dataset are shown in Fig. 6 (more
results in Table S3 in supplementary file, available online).
Overall, all the networks showed worse performance on the
INbreast dataset than on the clinical dataset but with a simi-
lar trend. The results of the three residual networks
(ResNet34, ResNet50, and ResNet101) showed no difference
in classification accuracy. ResNet34 has slightly higher F1
score and AUC. Dilated convolutions contributed to 4.4 per-
cent increase in classification accuracy but harmed the
F1 score and the AUC. Attention modules contributed to
4.9 percent accuracy increase, 8.1 percent F1 score increase,
and 1.1 percent AUC increase. Integrating both the dilated
convolutions and the attention modules increase the classifi-
cation accuracy by 7.1 percent, F1 score by 14.1 percent, and
AUC by 1.8 percent compared to ResNet50.

Compared to the three existing models, our proposed
ResNet with dilated convolutions and attention modules
showed the best performance reflected by all the three evalua-
tion metrics (Table 7). Specifically, our model improved the
classification accuracy by 6.1 percent, F1 score by 10.4 percent,

TABLE 3
Classification Results of Different Baseline
ResNet Models on the Clinical Dataset

ResNet50 Accuracy (%) F1 score (%) AUC (%)

Add DC 88.2 86.7 97.3
Add CA 88.1 86.7 97.2
Add DC & CA 88.7 87.1 97.4

DC: Dilated Convolutions. CA: Channel-wise Attention.

TABLE 4
Results Comparison to Existing Models on the Clinical Dataset

Models Accuracy (%) F1 score (%) AUC (%)

Mohamed et al. [36] 86.2 84.7 97.1
Bahl et al. [37] 87.1 85.6 97.2
Gandomkar et al. [39] 86.2 84.7 97.1
Ours 88.7 87.1 97.4

TABLE 5
Classification Results of Different Models With
Different Input Settings on the Clinical Dataset

Inputs ResNet50
Accuracy

(%)
F1 score

(%)
AUC
(%)

Four inputs
(CC &MLO)

Baseline 90.3 88.5 97.7
Add DC 91.1 90.1 97.9
Add CA 90.9 89.5 97.5

Add DC& CA 92.1 91.2 98.1

Two inputs
(CC)

Baseline 90.3 88.3 97.4
Add DC 91.1 89.2 97.9
Add CA 91.1 90.2 97.6

Add DC& CA 92.5 91.7 98.2

Two inputs
(MLO)

Baseline 68.2 61.2 90.2
Add DC 71.2 66.1 92.1
Add CA 71.0 64.6 92.8

Add DC& CA 75.2 67.9 93.6

TABLE 6
Classification Results of Different Models With Independent

Feature Extraction Streams

Inputs ResNet50 Accuracy (%) F1 score (%) AUC (%)

Four inputs
(CC &MLO)

Baseline 88.7 87.4 97.1
Add DC & CA 90.3 89.2 97.0

Two inputs
(CC)

Baseline 88.9 86.7 97.2
Add DC & CA 90.3 90.8 97.7

Two inputs
(MLO)

Baseline 66.8 62.0 89.0
Add DC & CA 71.6 63.7 91.4
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andAUCby 2.6 percent. Detailed results of each BI-RADS cat-
egory suggested that under most cases, our proposed model
could outperform the existing models (Table S4 in supple-
mentary file, available online).

Similarly, we checked the confusionmatrix generated from
one experiment of the proposed network on the INbreast
dataset (Table 8). Same as the clinical dataset, themost confus-
ing images come from the neighboring categories.

5 DISCUSSION

Traditional radiomicsmethods extract features based onman-
ual observation and operations, including manually design-
ing the strategies for feature extraction and selection.
Compared to the traditional feature engineering approach,
deep convolutional networks with residual learning can auto-
matically extract high-order, high-abstraction, and subtle fea-
tures from mammograms that might even be overlooked by
human naked eyes, which enables accurate discrimination of
the four BI-RADS categories. Moreover, by working with the
whole original images, the classification model has access to
all the image-relevant information and elevated performance
could be expected. With the proposed single-input dilated
and attention-guided deep residual learning network, an
overall accuracy of 88.7 and 70.0 percent for the four BI-RADS
category classification taskwere obtained for the clinical data-
set and the public dataset, respectively.

The performance of deep neural networks depends signifi-
cantly on the studied dataset. In our case, we have a larger
clinical dataset with relatively balanced distribution of the
patients over the four BI-RADS categories. Thus, satisfactory
classification results were achieved with all the different
ResNet-based models and only a slight improvement was
observed for the proposedmethod. However, for the INbreast
dataset, not only the available images were limited, but also a
severe imbalanced distribution over the four categories was

observed (Fig. 1b). Training a classification network with this
dataset is very challenging. Thus, our proposed model with
an increased model capacity achieved significant classifica-
tion enhancement over the baseline ResNet models. We have
tried to balance the category distribution by giving weighted
loss during training or augmentation more on BI-RADS IV
intensionally.We have also tested to combine the two datasets
and train the models on the mixed dataset. In addition, extra
experiments with models pretraining on the clinical dataset
and finetuning on the INbreast dataset have been conducted.
But all these attempts showed no significant performance
improvement even though finetuning speeds up the conver-
gence of the model training (Tables S5-S10 in supplementary
file, available online). It is acceptable as the two datasets came
from different sources and a large domain gap is expected.
There are studies showing that utilizing simple weighted loss
or joint training for images from different domains lead to
decreased model performance [49]. We will go further in this
direction by developing strategies to bridge the two datasets
or to select those images that can enhance the classification
performance of the models when using joint training. It is to
be noted that the INbreast dataset contains 107 images with
breast masses, which might also affect the density classifica-
tion.We plan to solve these issues in the following study.

Multi-view mammograms contain complementary infor-
mation that can be utilized to enhance breast density classi-
fication performance. Correspondingly, we designed a
multi-stream network architecture and improved classifica-
tion performance was achieved. Special attention should be
paid when designing the multi-input models as our experi-
ments indicate that the CC-view and MLO-view images are
not equally beneficial to the density classification task. Our
models with two CC-view inputs generate similar or even
slightly better results than the four-input models on the clin-
ical dataset. This interesting observation reflects that either

Fig. 6. Classification results of different networks on the INbreast dataset. (a) Classification accuracy. (b) F1 score. (c) AUC of the ROC.

TABLE 7
Results Comparison to Existing Models on the INbreast Dataset

Models Accuracy (%) F1 score (%) AUC (%)

Mohamed et al. [36] 59.6 35.4 82.0
Bahl et al. [37] 63.8 48.9 81.2
Gandomkar et al. [39] 63.9 53.1 82.1
Ours 70.0 63.5 84.7

TABLE 8
Confusion Matrix Generated From One Experiment of ResNet50

+ DC + CA on INbreast Dataset (Accuracy in %)

BI-RADS I II III IV

I 95.8 4.2 0 0
II 11.1 69.4 16.7 2.8
III 11.1 27.8 61.1 0
IV 0 16.6 16.7 66.7
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the MLO-viewmammograms are redundant in this task or a
more elegant network design is needed to utilize the MLO-
view mammograms in an effective manner, which we will
investigate further in the following work.

Different imaging systems or experimental settings gen-
erate images of different standards. A trained CNN can
only properly handle the domain-specific images. Though
including different types of images into the training process
can help build a more robust CNN model, it is not realistic
to collect a dataset which considers all the different possibil-
ities. Thanks to the large capacity of CNNs, our classifica-
tion model could be easily extended depending on the
application situations. If the dataset to be processed is in a
similar domain as the original dataset, the trained CNN
model could be used directly. However, if the new dataset
is in a very different domain from the original dataset, fine-
tuning of the trained CNN is required before it could be suc-
cessfully applied. Compared with training from scratch,
fine-tuning of CNNs requires much fewer samples and the
training process is significantly faster.

Our residual learning-based CNNmodel could serve as a
baseline for mammographic density classification. In the
future, we expect to collect more data to train a more power-
ful CNN model. We will go deeper into the class imbalance
issue. As discussed in the results section, our architecture
still needs to be optimized. We also plan to test the fine-tun-
ing performance of the baseline model by using datasets
that come from different systems or different experimental
settings. We make our code and trained models publicly
available to foster the research in the field.

6 CONCLUSION

In this study, we investigated the utilization of a radiomics-
based method through residual learning for mammographic
breast density classification. To elevate the classification per-
formance of the networks, we integrated dilated convolutions
and attention mechanisms into the naive deep residual net-
works. The proposed method is trained end-to-end and
sophisticated pre-processing of the mammographic images,
such as segmentation of the breast tissues, is not required.
Our proposedmethod achieved superior classification perfor-
mance on the clinical dataset, where a larger quantity of
images were available and the image distributions over the
different categories were relatively balanced. With this data-
set, we also validated that multi-view inputs were beneficial
to the breast density classification task. For the publicly avail-
able dataset, the proposed network still showed better perfor-
mance than the naive residual networks but with decreased
classification accuracy than the clinical dataset. Following this
work, we plan to solve the data imbalance problem as well as
the issues on how to properly train deep CNNs with small
datasets and network architecture optimization.
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